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Abstract

We provide a short overview of the Argpref solver submitted to the ICCMA 2019 com-
petition. Argpref focuses on computation of the ideal semantics. The solver implements a
recently proposed SAT-with-preferences approach to computing the backbone of a propo-
sitional encoding of admissible sets in order to construct the ideal extension of a given
argumentation framework from the backbone.

1 Introduction

We provide a short overview of the Argpref solver submitted to the ICCMA 2019 compe-
tition. Argpref focuses on computation of the ideal semantics. The solver implements a
recently-proposed SAT-with-preferences [5, 7] based approach [6] to computing the backbone
of a propositional encoding of admissible sets of a given argumentation framework, and applies
polynomial-time postprocessing [3, 9] to construct the ideal extension from the backbone.

2 Backbone Computation by SAT-with-Preferences

We shortly overview the SAT-with-preferences approach to backbone computation; for more
details, see [6].

If a Boolean variable x takes the same value in all satisfying truth assignments of a given
conjunctive normal form (CNF) formula F , x is called a backbone variable of F ; the value x
is assigned to in all satisfying assignments is called the polarity of x. If x = 1 (x = 0) in all
satisfying assignments, then x (¬x) is a backbone literal of F . The backbone of F consists of the
backbone literals of F , or equivalently, of its backbone variables together with their respective
truth values.

The following simple observation is central to backbone computation. Given a variable x
such that τ1(x) = 0 and τ2(x) = 1, where τ1 and τ2 are two models of a CNF formula F , neither
of the literals x and ¬x are backbone literals of F .

Algorithm 1 outlines in pseudocode the BB-pref approach to computing the backbone of a
given CNF formula. A pref-SAT solver allows for finding a best satisfying assignment (model)
with respect to a preference ordering over the literals of F [8, 5]. The intuitive idea is to discard
a maximal number of non-backbone literals at each iteration. Recall that a backbone literal is
a literal that is contained in every model. If we find two models τ1 and τ2 such that x ∈ τ1
and ¬x ∈ τ2, then neither x nor ¬x is a backbone literal. In the context of our algorithm, we
use this observation together with preferences in order to discard non-backbone literals from
consideration. More specifically, the algorithm maintains a set of backbone literal candidates
B. At any stage during search, literal l is in B if we have not seen a model with ¬l.

The search begins (Algorithm 1, line 2) by computing an arbitrary model τ of the input
formula F ; i.e., at this stage, no preferences are imposed, and the pref-SAT solver acts like
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Algorithm 1: BB-pref: Backbone computation using pref-SAT

1 Function bb-pref(F)
2 τ ← pref-SAT(F )
3 B ← τ
4 for l ∈ B do
5 setPreference(¬l)
6 while true do
7 τ ← pref-SAT(F )
8 C ← B \ τ
9 if C = ∅ then

10 return B
11 for l ∈ C do
12 removePreference(¬l)
13 B ← B \ {l}

a standard SAT solver. The set of candidate backbone literals B is initialized to τ (line 3).
Then, for each l ∈ B the algorithm sets the preference ¬l � l′ for each l′ ∈ Lit(F ) \ B′, where
B′ = {¬l | l ∈ B}, via the setPreference function (line 5). The idea here is to force a maximal
set of literals in B to be flipped. For each literal l in B that we are able to flip (in terms of
obtaining a model under the modified B), we know that l and ¬l are not backbone literals.
During the main loop, pref-SAT is called to obtain the most preferred model τ w.r.t. the
modified B (line 7). On line 8 information of the flipped literals are extracted and stored in C.
If C is not empty, we know for each literal l ∈ C that neither l nor ¬l is a backbone literal. So
for each l ∈ C we remove the preferences on l via the removePreference function (line 12), and
further, we remove l from the set of backbone literal candidates B (line 13). Otherwise, if C is
empty, it is no more possible to flip any literals in B. This means that all the literals in B are
backbone literals and the set B is returned (line 10).

3 Postprocessing to Obtain the Ideal Extension

As explained in [3, 9], the ideal extension of a given argumentation framework (AF) F = (A,R)
can be determined via computing the backbone of a propositional encoding of admissible sets,
and afterwards applying straightforward postprocessing to the backbone. Specifically, the main
computational task (in terms of computational complexity) is to determine the set of credulously
accepted arguments of F with respect to admissible sets, i.e., the set of arguments

⋃
adm(F ).

This is achieved by first computing the backbone B of the standard propositional encoding [2]∧
(a,b)∈R

(¬a ∨ ¬b) ∧
∧

(b,c)∈R

(
¬c ∨

∨
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)

of adm(F ), i.e., the collection of admissible sets of F . It then holds that
⋃

adm(F ) = A \ {a |
¬a ∈ B}.

As detailed in [9], the ideal extension is then easy to determine from
⋃
adm(F ) via a fast

polynomial-time algorithm. In short, starting from S = A\
⋃
adm(F ), first add to S arguments

x ∈
⋃
adm(F ) such that all arguments adjacent to x are in A \

⋃
adm(F ). Then, considering

the AF F ′ = (S,RS), where RS is R restricted to S, iteratively remove from S argument which

2



Argpref Previti and Järvisalo

are not defended by S in F ′. After at most |S| iterations, this yields the ideal extension of
F [3, 9].

4 Implementation

The SAT-with-preferences approach is implemented on top of the MiniSAT 2.2.0 SAT solver [4].
The postprocessing and input-output interface is also integrated into the code of MiniSAT. The
approach was shown in [6] to perform well on the ICCMA 2017 benchmarks, outperforming the
first-place Pyglaf solver [1].

5 Availability

The solver can be found under the repository elsandp/argpre at

https://hub.docker.com/r/elsandp/argpref.

The tasks supported by Argpref are: DC-ID, SE-ID.
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